tf.random.set_seed(42)
model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])
model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'],
)
history = model.fit(train_data_norm, train_labels, epochs=4, verbose=0)
model.evaluate(test_data_norm, test_labels)
"""
BEFORE:
313/313 [==============================] - 1s 2ms/step - loss: 1.0432 - accuracy: 0.5858
AFTER:
313/313 [==============================] - 1s 3ms/step - loss: 0.4513 - accuracy: 0.8402
"""